Report from the Inter-Agency
Workshop on HPC Resilience

John T. Daly



Workshop overview

3% day workshop focused on technical challenges of coordinated
HPC resilience strategies in the exascale timeframe

30 participants: system hardware, system software, application
developers and users, algorithms and libraries, file systems, I/O and
storage, visualization and data analytics

Highly interactive format

— problem solving teams of not more than 10 persons each

— collaboratively develop a plan and roadmap for implementing
resilience

Assessed current capabilities, gaps and dependencies for
representatlve applications from ‘predictive science” (e.g., PDE)
and “not predictive science” (e.g., big data) domains

Created “proof of concept” resilience strategies and an R&D
roadmap for a coordinated resilience framework



Goals of the workshop

Resilience 1s about keeping the application workload running to a
correct solution in a timely and efficient manner in spite of frequent
hard (i.e., unrecoverable) and soft (i.e., recoverable) errors

Demonstrate both the need for and existence of practical resilience
strategies that address the future needs of the application via the
resources available to the system

Create a technical strategy and roadmap for addressing resilience in
the exascale timeframe

— What are our requirements? What “needs” to work and what can we do
without?

— How are we going to meet those requirements?
Goals of the workshop DO NOT include...
— Discussion of our current projects or research interests
— Creating new research opportunities
— Figuring out how to get funding for future work



Programmatic considerations

Resilience strategy should not be minimalist or ad hoc, but neither
can we afford a “Cadillac” solution

If we cannot come up with a credible plan for how we intend to
integrate all the pieces then mission 1s likely to view resources
expended on resilience as wasted

If we ask for the kitchen sink we will end up with nothing; 1f we
short-sell we still end up with nothing =» not too small; not too big;
just right!

We need...

— undistracted focus on a “no frills” yet “robust” resilience strategy

— clear delineation between engineering (what we know how to do) and
research (what we need to figure out)

Apply Occam’s Razor =» simplest is best

I don’t care if it’s an interesting research question; all I care is if I
need to figure it out in order to implement a resilience strategy!



Sample “marching orders”

Working group sessions will be a single assignment divided somewhat
arbitrarily into two assignments

Make as much progress as you can on every part of the assignment; don’t
get stuck — 1dentify open issues; move on

Start with a simple model for resilience; as time, expertise and resources
permit then refine your solutions

Resilience loves anecdotes and anecdotes are all about the edge cases and
extremes =P use best engineering judgment to focus on middle of the
distribution and not the tails

Focus on high importance items and “low hanging fruit”; do NOT get
distracted by “bright shiny objects” (e.g., better ECC)
Make it in the context of stated (previous day) application requirements
— Convert more hard errors into soft errors
— Provide for reliable and unreliable execution regions

— Empower the application to make some decisions, without negatively
impacting the aggregate system workload



Summary of workshop conclusions

The number of errors, particularly soft errors, occurring on HPC
systems will continue to increase

A right-sized, well-conceived resilience strategy in the exascale
timeframe 1s more cost effective than continuing to rely on ad-hoc
resilience solutions

Must at a minimum provide for a resilience infrastructure that
facilitates

— System management of hard errors by effectively “converting” them to
soft errors whenever feasible

— Application management of soft errors through interfaces that allow it
simple controls over how and when to respond to errors

Such a framework 1s foundational to a deployable and sustainable
HPC resilience strategy in the exascale timeframe

Priorities for R&D in the exascale timeframe: fault characterization,
detection, FT algorithms, FT programming models and tools



Priority: Fault characterization

* Rehiability will get worse with deeply scaled
process technologies creating new modes of
failure

* Based on anticipated technology trends, the
HPC community needs to develop a useful
taxonomy for describing

— the types of faults that future systems are expected
to encounter

— their anticipated frequency and impact



Priority: Detection

In the exascale timeframe, error “recovery” will
likely be manageable using known techniques for
local checkpointing

Fault “prediction” 1s probably too hard a problem
to realistically tackle in this timeframe

The research focus needs to be error “detection”
which requires the system and application to work
together 1n a coordinated fashion

Industry 1s not going to solve this problem for the
HPC community



Priority: FT Algorithms

* Three classes of algorithms were 1dentified
a) those that are embarrassingly fault-tolerant

b) those that are not fault-tolerant but are self-
checking

c) those that are neither fault-tolerant nor self-
checking
* Most algorithms currently in class (¢) could be

moved to class (b) or even class (a) by a
moderate R&D investment



Priotity: FT programming models

* Resilience would benefit strongly from a
programming model that supports some notion of

— transactions in time (€.g., roll-back and recovery)
— transactions in space (e.g., fault containment domains)

* An uncomplicated, directive-based interface us-
ing a handful of assertions (e.g., create persistent
memory domains, allocate “reliable”” and
“unreliable” code regions, etc.) provides most of
the necessary interfaces for implementing
application fault-tolerance



Priority: Tools

e Resilience lacks a mature, validated test
infrastructure to verify the effectiveness of
various resilience strategles for keeping the

app

hard

e Faul

1cation running in the face of high rates of
and soft errors

t injection tools are need 1n particular to

simulate all classes of faults

* Models will be required to support the fault
testing infrastructure at scale



